New uniqueness results of solutions for fractional differential equations with infinite delay

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations

This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction  principle and Bihari's inequality.  A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.

متن کامل

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

متن کامل

The Existence and Uniqueness of Solutions for a Class of Nonlinear Fractional Differential Equations with Infinite Delay

and Applied Analysis 3 [0, b]. If there exist positive constants a and α ∈ (0, 1) such that V(t) ≤ w(t) + a ∫ t 0 (t − s) V(s)ds, then there exists a constant K = K(α) such that V(t) ≤ w(t)+Ka∫t 0 w(s)(t− s) −α ds, for all t ∈ [0, b]. In this paper we use the alternative Leray-Schauder’s theorem and Banach’s contraction principle for getting the main results. These theorems can be found in [27,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2010

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2010.08.015